KBQA: An Online Template Based Question Answering System over Freebase

نویسندگان

  • Wanyun Cui
  • Yanghua Xiao
  • Wei Wang
چکیده

Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. QA systems over knowledge bases produce accurate and concise answers. The key of QA over knowledge bases is to map the question to a certain substructure in the knowledge base. To do this, KBQA (Question Answering over Knowledge Bases) uses a new kind of question representation: templates, learned from a million scale QA corpora. For example, for questions about a city’s population, KBQA learns templates such as What’s the population of $city?, How many people are there in $city?. It learns overall 1171303 templates for 4690 relations. Based on these templates, KBQA effectively and efficiently supports binary factoid questions or complex questions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freebase-triples: A Methodology for Processing the Freebase Data Dumps

The Freebase knowledge base was a significant Semantic Web and linked data technology during its years of operations since 2007. Following its acquisition by Google in 2010 and its shutdown in 2016, Freebase data is contained in a data dump of billions of RDF triples. In this research, an exploration of the Freebase data dumps will show best practices in understanding and using the Freebase dat...

متن کامل

Constraint-Based Question Answering with Knowledge Graph

WebQuestions and SimpleQuestions are two benchmark data-sets commonly used in recent knowledge-based question answering (KBQA) work. Most questions in them are ‘simple’ questions which can be answered based on a single relation in the knowledge base. Such data-sets lack the capability of evaluating KBQA systems on complicated questions. Motivated by this issue, we release a new data-set, namely...

متن کامل

ISOFT at QALD-5: Hybrid Question Answering System over Linked Data and Text Data

We develop a question answering system over linked data and text data. We combine knowledgebase-based question answering (KBQA) approach and information retrieval based question answering (IRQA) approach to solve complex questions. To solve this kind of complex question using only knowledgebase and SPARQL query, we use various methods to translate natural language (NL) phrases in question to en...

متن کامل

Question Answering on Freebase via Relation Extraction and Textual Evidence

Existing knowledge-based question answering systems often rely on small annotated training data. While shallow methods like relation extraction are robust to data scarcity, they are less expressive than the deep meaning representation methods like semantic parsing, thereby failing at answering questions involving multiple constraints. Here we alleviate this problem by empowering a relation extr...

متن کامل

KBQA: Learning Question Answering over QA Corpora and Knowledge Bases

Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. Unlike web search, QA over a knowledge base gives out accurate and concise results, provided that natural language questions can be understood and mapped precisely to structured queries over the knowledge base. The challenge, however, is that a human can ask one question in many different ways. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016